An analysis of extinction coefficients of particles and water moisture in the stack after flue gas desulfurization at a coal-fired power plant.
نویسندگان
چکیده
Two important factors that affect in-stack opacity--light extinction by emitted particles and that by water moisture after a flue gas desulfurization (FGD) unit--are investigated. The mass light extinction coefficients for particles and water moisture, k(p) and k(w), respectively, were determined using the Lambert-Beer law of opacity with a nonlinear least-squares regression method. The estimated k(p) and k(w) values vary from 0.199 to 0.316 m2/g and 0.000345 to 0.000426 m2/g, respectively, and the overall mean estimated values are 0.229 and 0.000397 m2/g, respectively. Although k(w) is 3 orders of magnitude smaller than k(p), experimental results show that the effect on light extinction by water moisture was comparable to that by particles because of the existence of a considerable mass of water moisture after a FGD unit. The mass light extinction coefficient was also estimated using Mie theory with measured particle size distributions and a complex refractive index of 1.5-ni for fly ash particles. The k(p) obtained using Mie theory ranges from 0.282 to 0.286 m2/g and is slightly greater than the averaged estimated k(p) of 0.229 m2/g from measured opacity. The discrepancy may be partly due to a difference in the microstructure of the fly ash from the assumption of solid spheres because the fly ash may have been formed as spheres attached with smaller particles or as hollow spheres that contained solid spheres. Previously reported values of measured k(p) obtained without considering the effects of water moisture are greater than that obtained in this study, which is reasonable because it reflects the effect of extinction by water moisture in the flue gas. Additionally, the moisture absorbed by particulate matter, corresponding to the effect of water moisture on the particulates, was clarified and found to be negligible.
منابع مشابه
Prevention of stack corrosion under wet flue gas desulfurization conditions in a coal-fired power plant: performance analysis and comparative study
Background: This study investigated the prevention of stack corrosion under wet flue gas desulfurization conditions in a coal-fired power plant. The performance analysis and comparative studies of six materials for the prevention of stack corrosion were investigated. Results: The ion chromatography analysis showed the acid condensation contained fluoride, chloride, nitrate, sulphate, and sulphi...
متن کاملInvestigation of Utilization Possibility of Fluid Gas Desulfurization Waste for Industrial Waste Water Treatment
Flue gas desulfurization gypsum (FGD) is a waste material arouse from coal power plants. Hydroxyapatite (HAP) is a biomaterial with porous structure. In this study, FGD gypsum which retrieved from coal power plant in Turkey was characterized and HAP particles which can be used as an adsorbent in wastewater treatment application were synthesized from the FGD gypsum. The raw materials are charact...
متن کاملAtomistic-Level Models
Understanding the speciation of mercury throughout the coal-combustion process is crucial to the design of efficient and effective mercury removal technologies. Mercury oxidation takes place through combined homogeneous (i.e., strictly in the gas phase) and heterogeneous (i.e., gas–surface interactions) pathways. Both bench-scale combustion experiments [1] and quantumchemistry-based theoretical...
متن کاملAn Improved System for Utilizing Low-Temperature Waste Heat of Flue Gas from Coal-Fired Power Plants
In this paper, an improved system to efficiently utilize the low-temperature waste heat from the flue gas of coal-fired power plants is proposed based on heat cascade theory. The essence of the proposed system is that the waste heat of exhausted flue gas is not only used to preheat air for assisting coal combustion as usual but also to heat up feedwater and for low-pressure steam extraction. Ai...
متن کاملThis Drying System Uses a Combination of Thermal Energy from Boiler and Condenser Cooling Water as the Heat Source for Coal Drying USE OF POWER PLANT WASTE HEAT TO REDUCE COAL MOISTURE PROVIDES PLANT PERFORMANCE AND ENVIRONMENTAL BENEFITS
In recent years, subbituminous coal from the Powder River Basin and lignites from Texas and North Dakota have captured an increasing share of the power generation market involving pulverized coal-fired power plants. However, these coals contain relatively large amounts of moisture, which affect unit performance, stack emissions and plant maintenance costs. The moisture also results in fuel hand...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Air & Waste Management Association
دوره 61 8 شماره
صفحات -
تاریخ انتشار 2011